skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Claussen, Jonathan_C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Extensive research into green technologies is driven by the worldwide push for eco‐friendly materials and energy solutions. The focus is on synergies that prioritize sustainability and environmental benefits. This study explores the potential of abundant, non‐toxic, and sustainable resources such as paper, lignin‐enriched paper, and cork for producing laser‐induced graphene (LIG) supercapacitor electrodes with improved capacitance. A single‐step methodology using a CO2laser system is developed for fabricating these electrodes under ambient conditions, providing an environmentally friendly alternative to conventional carbon sources. The resulting green micro‐supercapacitors (MSCs) achieve impressive areal capacitance (≈7–10 mF cm−2) and power and energy densities (≈4 μW cm‐2and ≈0.77 µWh cm−2at 0.01 mA cm−2). Stability tests conducted over 5000 charge–discharge cycles demonstrate a capacitance retention of ≈80–85%, highlighting the device durability. These LIG‐based devices offer versatility, allowing voltage output adjustment through stacked and sandwich MSCs configurations (parallel or series), suitable for various large‐scale applications. This study demonstrates that it is possible to create high‐quality energy storage devices based on biodegradable materials. This development can lead to progress in renewable energy and off‐grid technology, as well as a reduction in electronic waste. 
    more » « less
  2. Abstract Complex graphene electrode fabrication protocols including conventional chemical vapor deposition and graphene transfer techniques as well as more recent solution‐phase printing and postprint annealing methods have hindered the wide‐scale implementation of electrochemical devices including solid‐state ion‐selective electrodes (ISEs). Herein, a facile graphene ISE fabrication technique that utilizes laser induced graphene (LIG), formed by converting polyimide into graphene by a CO2laser and functionalization with ammonium ion (NH4+) and potassium ion (K+) ion‐selective membranes, is demonstrated. The electrochemical LIG ISEs exhibit a wide sensing range (0.1 × 10−3–150 × 10−3mfor NH4+and 0.3 × 10−3–150 × 10−3mfor K+) with high stability (minimal drop in signal after 3 months of storage) across a wide pH range (3.5–9.0). The LIG ISEs are also able to monitor the concentrations of NH4+and K+in urine samples (29–51% and 17–61% increase for the younger and older patient; respectively, after dehydration induction), which correlate well with conventional hydration status measurements. Hence, these results demonstrate a facile method to perform in‐field ion sensing and are the first steps in creating a protocol for quantifying hydration levels through urine testing in human subjects. 
    more » « less